28 research outputs found

    Iterative Discretization of Optimization Problems Related to Superresolution

    Get PDF
    International audienceWe study an iterative discretization algorithm for solving optimization problems regularized by the total variation norm over the space M(Ω) of Radon measures on a bounded subset Ω of R d. Our main motivation to study this problem is the recovery of sparse atomic measures from linear measurements. Under reasonable regularity conditions, we arrive at a linear convergence rate guarantee

    Optimization Dynamics of Equivariant and Augmented Neural Networks

    Full text link
    We investigate the optimization of multilayer perceptrons on symmetric data. We compare the strategy of constraining the architecture to be equivariant to that of using augmentation. We show that, under natural assumptions on the loss and non-linearities, the sets of equivariant stationary points are identical for the two strategies, and that the set of equivariant layers is invariant under the gradient flow for augmented models. Finally, we show that stationary points may be unstable for augmented training although they are stable for the equivariant models.Comment: v2: Revised manuscript. Mostly small edits, apart from new experiments (see Appendix E

    Reliable recovery of hierarchically sparse signals for Gaussian and Kronecker product measurements

    Full text link
    We propose and analyze a solution to the problem of recovering a block sparse signal with sparse blocks from linear measurements. Such problems naturally emerge inter alia in the context of mobile communication, in order to meet the scalability and low complexity requirements of massive antenna systems and massive machine-type communication. We introduce a new variant of the Hard Thresholding Pursuit (HTP) algorithm referred to as HiHTP. We provide both a proof of convergence and a recovery guarantee for noisy Gaussian measurements that exhibit an improved asymptotic scaling in terms of the sampling complexity in comparison with the usual HTP algorithm. Furthermore, hierarchically sparse signals and Kronecker product structured measurements naturally arise together in a variety of applications. We establish the efficient reconstruction of hierarchically sparse signals from Kronecker product measurements using the HiHTP algorithm. Additionally, we provide analytical results that connect our recovery conditions to generalized coherence measures. Again, our recovery results exhibit substantial improvement in the asymptotic sampling complexity scaling over the standard setting. Finally, we validate in numerical experiments that for hierarchically sparse signals, HiHTP performs significantly better compared to HTP.Comment: 11+4 pages, 5 figures. V3: Incomplete funding information corrected and minor typos corrected. V4: Change of title and additional author Axel Flinth. Included new results on Kronecker product measurements and relations of HiRIP to hierarchical coherence measures. Improved presentation of general hierarchically sparse signals and correction of minor typo
    corecore